Author Affiliations
Abstract
1 Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China
2 Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
3 School of Electronic and Computer Engineering, Oklahoma State University, Stillwater, OK 74078, USA
Plasmonic vortices confining orbital angular momentums to surface have aroused wide research interest in the last decade. Recent advances of near-field microscopes have enabled the study on the spatiotemporal dynamics of plasmonic vortices, providing a better understanding of optical orbital angular momentums in the evanescent wave regime. However, these works only focused on the objective characterization of plasmonic vortex and have not achieved subjectively tailoring of its spatiotemporal dynamics for specific applications. Herein, it is demonstrated that the plasmonic vortices with the same topological charge can be endowed with distinct spatiotemporal dynamics by simply changing the coupler design. Based on a near-field scanning terahertz microscopy, the surface plasmon fields are directly obtained with ultrahigh spatiotemporal resolution, experimentally exhibiting the generation and evolution divergences during the whole lifetime of plasmonic vortices. The proposed strategy is straightforward and universal, which can be readily applied into visible or infrared frequencies, facilitating the development of plasmonic vortex related researches and applications.
plasmonic vortex surface plasmon spatiotemporal dynamics optical orbital angular momentum 
Opto-Electronic Advances
2023, 6(4): 220133
Author Affiliations
Abstract
1 Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin, China
2 Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin, China
3 School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, USA
Surface plasmons (SPs) are electromagnetic surface waves that propagate at the interface between a conductor and a dielectric. Due to their unique ability to concentrate light on two-dimensional platforms and produce very high local-field intensity, SPs have rapidly fueled a variety of fundamental advances and practical applications. In parallel, the development of metamaterials and metasurfaces has rapidly revolutionized the design concepts of traditional optical devices, fostering the exciting field of meta-optics. This review focuses on recent progress of meta-optics inspired SP devices, which are implemented by the careful design of subwavelength structures and the arrangement of their spatial distributions. Devices of general interest, including coupling devices, on-chip tailoring devices, and decoupling devices, as well as nascent SP applications empowered by sophisticated usage of meta-optics, are introduced and discussed.
surface plasmons metamaterials metasurfaces plasmonics metadevices 
Photonics Insights
2023, 2(1): R02
Author Affiliations
Abstract
1 Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, and Key Laboratory of Optoelectronics Information and Technology, Ministry of Education of China, Tianjin 300072, China
2 Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
3 Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
4 e-mail: hz372@cam.ac.uk
5 e-mail: alearn@tju.edu.cn
6 e-mail: heb1000@cam.ac.uk
7 e-mail: jiaghan@tju.edu.cn
Metasurfaces consisting of artificial subwavelength structure arrays have shown unprecedented ability to manipulate the phase, amplitude, and polarization of light. Separate and complete control over different spin states, namely the orthogonal circular polarizations, has proven more challenging as compared to the control over orthogonal linear polarizations. Here, we present and experimentally demonstrate several spin-dependent wavefront control metasurfaces in the terahertz regime using all-silicon dielectric structures. Such spin-dependent all-silicon metasurfaces are easy to fabricate and have potential applications in spin-involved ultracompact and miniaturized terahertz optical systems as well as terahertz communication systems.
Photonics Research
2022, 10(7): 07001695
Author Affiliations
Abstract
1 Tianjin University, Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin, China
2 Shanxi Datong University, Institute of Solid State Physics and College of Physics and Electronic Science, Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials, Datong, China
3 Wuhan University of Technology, School of Information Engineering, Wuhan, China
4 Tianjin Normal University, College of Physics and Materials Science, Tianjin, China
5 City University of New York, Advanced Science Research Center, Photonics Initiative, New York, United States
6 City University of New York, Graduate Center, Physics Program, New York, United States
7 University of Hong Kong, Faculty of Science, Department of Physics, Hong Kong, China
8 University of Hong Kong, Department of Electrical and Electronic Engineering, Hong Kong, China
9 Guilin University of Electronic Technology, Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin, China
10 Oklahoma State University, School of Electrical and Computer Engineering, Stillwater, Oklahoma, United States
Metasurfaces have enabled the realization of several optical functionalities over an ultrathin platform, fostering the exciting field of flat optics. Traditional metasurfaces are achieved by arranging a layout of static meta-atoms to imprint a desired operation on the impinging wavefront, but their functionality cannot be altered. Reconfigurability and programmability of metasurfaces are the next important step to broaden their impact, adding customized on-demand functionality in which each meta-atom can be individually reprogrammed. We demonstrate a mechanical metasurface platform with controllable rotation at the meta-atom level, which can implement continuous Pancharatnam–Berry phase control of circularly polarized microwaves. As the proof-of-concept experiments, we demonstrate metalensing, focused vortex beam generation, and holographic imaging in the same metasurface template, exhibiting versatility and superior performance. Such dynamic control of electromagnetic waves using a single, low-cost metasurface paves an avenue towards practical applications, driving the field of reprogrammable intelligent metasurfaces for a variety of applications.
reprogrammable metasurfaces Pancharatnam–Berry phase mechanical metasurfaces microwaves 
Advanced Photonics
2022, 4(1): 016002
作者单位
摘要
天津大学精密仪器与光电子工程学院太赫兹研究中心, 天津 300072
电磁波传播过程中的等离子诱导透明效应以其强烈的色散特性在慢光器件、光动态存储器件、高灵敏度传感器等方面有着广泛的应用前景,而亚波长周期超表面成为了实现此效应常用的手段之一。如何有效调控由亚波长周期超表面与外场相互作用而产生的等离子诱导透明效应则成为了研究的热点。采用太赫兹时域光谱技术对放置在平行平板波导中的等离子诱导透明超表面进行了系统研究。在外部横电模式的激励下,通过改变超表面的结构参数,在理论和实验上实现了基于平行平板波导-超表面系统的等离子诱导透明效应的有效调控。另外,还通过表面电流和电场绝对值分布的模拟对等离子诱导透明效应调控背后的机制进行了探究。所得结果可以为基于等离子诱导透明效应的可调控电磁器件的设计提供一种新的思路。
光谱学 太赫兹技术 平行平板波导 亚波长周期超表面 等离子诱导透明效应 
中国激光
2021, 48(19): 1914005
作者单位
摘要
天津理工大学理学院,天津 300384
为了确认偏振光谱技术对复杂Sm原子的适用性,本文采用双色两步共振激发技术和光电离探测技术对Sm原子偶宇称高激发态的光谱进行了研究。首先,通过两步激发将处于基态4f66s27F0的Sm原子激发到偶宇称激发态(总角动量量子数J=0~2),并采用光电离技术对其进行探测;然后,通过对ππ、πσ、σ+σ+和σ+σ-不同偏振组合下的光谱进行对比分析,利用偏振选择定则确定了三个偶宇称高激发态的总角动量量子数J;最后,通过改变两步线偏振激发光光振动方向的夹角,得到了光电离信号与该角度的关系,从而验证了偏振光谱技术对Sm原子的适用性。
光谱学 原子光谱 偏振激发 Sm原子 偶宇称 光电离 高激发态 
激光与光电子学进展
2021, 58(11): 1130001
作者单位
摘要
天津大学精密仪器与光电子工程学院太赫兹研究中心,天津 300072
全息术是一种三维成像技术,它已经被应用于多种实际场景。随着计算机科学与技术的迅猛发展,计算全息由于其方便和灵活的特性,已经成为一种广泛应用的全息成像方法。本文回顾了我们近期基于超表面的太赫兹计算全息研究进展。其中,作为全息板的超表面展示出了超越传统光学器件的独特性能。首先,利用超表面实现了对于全息板每个像素的相位振幅同时且独立的调控,进而实现了高质量全息成像。这种新的电磁波操控能力也带来了新的全息成像效果,如利用介质超表面实现了全息像沿传播方向上的连续变化。其次,对超表面在不同偏振态下的响应进行设计,分别实现了线偏振态与频率复用、圆偏振态复用、以及基于表面波的偏振复用超表面全息术。此外,本文提出了依赖于温度变化而主动可控的超表面全息术,为今后计算全息术的设计与实现提供了新的方案,也推动了超表面在实际应用方面的发展。
太赫兹 计算全息 超表面 多路复用 terahertz computer generated holography metasurface multiplexing 
光电工程
2020, 47(5): 190674
Author Affiliations
Abstract
1 Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin, China
2 Oklahoma State University, School of Electrical and Computer Engineering, Stillwater, Oklahoma, United States
Terahertz science and technology promise many cutting-edge applications. Terahertz surface plasmonic waves that propagate at metal–dielectric interfaces deliver a potentially effective way to realize integrated terahertz devices and systems. Previous concerns regarding terahertz surface plasmonic waves have been based on their highly delocalized feature. However, recent advances in plasmonics indicate that the confinement of terahertz surface plasmonic waves, as well as their propagating behaviors, can be engineered by designing the surface environments, shapes, structures, materials, etc., enabling a unique and fascinating regime of plasmonic waves. Together with the essential spectral property of terahertz radiation, as well as the increasingly developed materials, microfabrication, and time-domain spectroscopy technologies, devices and systems based on terahertz surface plasmonic waves may pave the way toward highly integrated platforms for multifunctional operation, implementation, and processing of terahertz waves in both fundamental science and practical applications. We present a review on terahertz surface plasmonic waves on various types of supports in a sequence of properties, excitation and detection, and applications. The current research trend and outlook of possible research directions for terahertz surface plasmonic waves are also outlined.
plasmonics surface waves terahertz 
Advanced Photonics
2020, 2(1): 014001
Author Affiliations
Abstract
1 Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, and the Key Laboratory of Optoelectronics Information and Technology Tianjin, Ministry of Education of China, Tianjin 300072, China
2 Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
3 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
4 Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
5 School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
6 e-mail: weili.zhang@okstate.edu
Polarization manipulation is essential in developing cutting-edge photonic devices ranging from optical communication displays to solar energy harvesting. Most previous works for efficient polarization control cannot avoid utilizing metallic components that inevitably suffer from large ohmic loss and thus low operational efficiency. Replacing metallic components with Mie resonance-based dielectric resonators will largely suppress the ohmic loss toward high-efficiency metamaterial devices. Here, we propose an efficient approach for broadband, high-quality polarization rotation operating in transmission mode with all-dielectric metamaterials in the terahertz regime. By separating the orthogonal polarization components in space, we obtain rotated output waves with a conversion efficiency of 67.5%. The proposed polarization manipulation strategy shows impressive robustness and flexibility in designing metadevices of both linear- and circular-polarization incidences.
Photonics Research
2018, 6(11): 11001056
Author Affiliations
Abstract
1 Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China
2 Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
3 Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
4 School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
5 e-mail: jiaghan@tju.edu.cn
6 e-mail: weili.zhang@okstate.edu
Dielectric metasurfaces have achieved great success in realizing high-efficiency wavefront control in the optical and infrared ranges. Here, we experimentally demonstrate several efficient, polarization-independent, all-silicon dielectric metasurfaces in the terahertz regime. The metasurfaces are composed of cylindrical silicon pillars on a silicon substrate, which can be easily fabricated using etching technology for semiconductors. By locally tailoring the diameter of the pillars, full control over abrupt phase changes can be achieved. To show the controlling ability of the metasurfaces, an anomalous deflector, three Bessel beam generators, and three vortex beam generators are fabricated and characterized. We also show that the proposed metasurfaces can be easily combined to form composite devices with extended functionalities. The proposed controlling method has promising applications in developing low-loss, ultra-compact spatial terahertz modulation devices.
Far infrared or terahertz Metamaterials Phase shift 
Photonics Research
2018, 6(1): 01000024

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!